Bangladesh Army University of Science and Technology Department of Civil Engineering

Final Examination, Winter 2022

Course Code: MATH 1109 Time: 03 (Three) hours Level-1 Term-I

Full Marks:180

Course Title: Math I (Differential Calculus, Integral Calculus and Coordinate Geometry)

- N.B Figures in the margin indicate full marks allotted to each question.
 - · Symbols and abbreviations bear their standard meaning.
 - Use separate answer script for each PART.
 - The corresponding course outcomes (COs) are given in the right most column.

PART- A (Marks: 96)

		<u>PART- A (Marks: 90)</u>		
		(Answer any three questions from 1 to 4 including Q. No. 1)	Marks	COs
î.	a)	Define limit of a function.	05	1
	b)	Prove that if $\lim_{x\to a} f(x)$ exist, then it must be unique.	10	1
	c)	Test the continuity and differentiability of the function	15	2
		$f(x) = \begin{cases} 2x - 1 & \text{if } 0 < x \le 1 \\ x^2 - x + 1 & \text{if } x > 1 \end{cases} \text{ at the point } x = 1.$		
2.	a)	Find y_n in the case of $y = \frac{1}{(ax+b)^m}$.	10	2
	b)	State Leibnitz's Theorem.	05	1
	c)	If $y = e^{a \sin^{-1} x}$ then prove that $(1 - x^2)y_2 - a^2y = 0$. Hence prove that	15	2
		$(1-x^2)y_{n+2}-(2n+1)xy_{n+1}-(n^2+a^2)y_n=0.$		
3.	a)	State Role's Theorem.	05	2
	b)	Verify Rolle's Theorem for $f(x) = x^2 + 5x - 6$ in the interval $(-6, 1)$.	10	1
	c)	If $v = \sin^{-1} \frac{x^2 + y^2}{x + y}$ then show that $x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y} = \tan v$	15	2
4.	a)	The cost of manufacturing a certain article is given by the formula $f(x) = 2x^3 - 15x^2 + 36x + 12$. Find maximum and minimum cost.	15	3
	b)	Find the radius of curvature at the point (x, y) on the curve $y = a \log \left\{ \sec \left(\frac{x}{a} \right) \right\}$.	15	2

PART-B (Marks: 90)

(Answer any three questions from 5 to 8 including Q. No. 5)

			Marks	COs
5.	a)	Integrate:	15	3
		(i) $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ (ii) $\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$ (iii) $\int e^x \sin x dx$.		
	b)	Find the reduction formula for $\int \sin^n x dx$.	15	3
6.	a)	Define Beta function and show that, $\beta(m,n) = \beta(n,m)$.	20	3
	b)	Using Wallis formula, find the value of $\int_0^{\pi/2} \sin^9 x dx$.	10	3
	,			
7.	a)	Find the entire area within the cardioid $r = 4(1 + \cos \theta)$.	15	4
	b)	Derive the formula for the circumference of a circle of radius r .	15	4
		4.		
8.	a)	Find the radical center of the circles $x^2 + y^2 - 2x + 4y - 3 = 0$,	10	4
		$x^{2} + y^{2} + 4x - 3y - 5 = 0$, and $x^{2} + y^{2} - x - y + 1 = 0$.		
	b)	Determine the shortest distance between the skew lines	20	4
		L_1 : $x = 1 + 2t$, $y = 1 - 4t$, $z = 2 + 4t$		
		L_2 : $x = 2 - 5t$, $y = 4 - 3t$, $z = 5 - t$.		

Bangladesh Army University of Science and Technology Department of Civil Engineering

Final Examination, Winter 2022

Course Code: CHEM 1109
Time: 03 (Three) hours

Course Title: Chemistry

N.B • Figures in the margin indicate full marks allotted to each question.
• Symbols and abbreviations bear their standard meaning.
• Use separate answer script for each PART.
• The corresponding course outcomes (COs) are given in the right most column.

PART- A (Marks: 90)

(Answer any three questions from 1 to 4 including Q. No. 1) Marks COs a) Describe Bhors Atom Model with its limitations. 10 1 b) Explain why the 19th electron of potassium enter into 4s instead of 3d. 10 1 State the Pauli's exclusion principle with example. 10 1 Write down modern periodic law. Find out the position of the following elements in 15 1 2. a) the periodic table using electronic configuration- (i) Calcium (ii) Iron (iii) Phosphorous 10 List down the characteristics of a good paint. b) 05 Write the name of some paints. c) a) Describe manufacturing of cement with flow diagram. 15 Explain briefly the stages of setting of cement with reactions. 15 4 4 What is thermoplastic and thermosetting plastic? Write down their advantages and 20 disadvantages. 10 4 b) Briefly explain surface pretreatment.

PART- B (Marks: 90)

(Answer any three questions from 5 to 8 including Q. No. 5) Marks COs 15 2 Define Kp. Establish a relation between Kp and Kc. b) Using the equation of Kp prove that, amount of product increase with increasing the 15 3 pressure for the following reversible reaction: $N_2(g) + H_2(g) \rightleftharpoons NH_3(g)$ Define order of reaction. Deduce the integrated rate equation of a second order 2 15 a) 6. reaction. What is half-life of a reaction? Prove that half-life of a first order reaction does not 15 2 b) depend on the initial concentration of reactants. What do you mean by boiling point of a liquid and enthalpy of vaporization? 2 15 Explain the term degradation of polymer. Describe three processes of degradation of 15 2 polymers. 15 4 Describe Clausius-Clapeyron equation. Write short notes on- (i) Capillary action (ii) Viscosity (iii) Surface tension 15 4 b)

Bangladesh Army University of Science and Technology Department of Civil Engineering

Final Examination, Winter 2022

Course Code: PHY 1109 Time: 03 (Three) hours Level-1 Term-I Full Marks:180

Course Title: Physics I

- N.B Figures in the margin indicate full marks allotted to each question.
 - Symbols and abbreviations bear their standard meaning.
 - Use separate answer script for each PART.
 - The corresponding course outcomes (COs) are given in the right most column.

PART- A (Marks: 90)

		(Answer any three questions from 1 to 4 including Q. No. 1)		
			Marks	COs
1.	a)	Define damped harmonic motion.	05	1
	b)	Find an expression for the differential equation of damped harmonic oscillation.	20	2
	c)	The equation for displacement of a point on a damped oscillator is given by,	05	3
		$x = 5e^{-0.25t} sin \frac{\pi}{2}t$ meter. Find the velocity of the oscillating point at $t = \frac{T}{4}$.		
2.	a)	Explain mechanical waves.	05	1
	b)	Derive the differential equation of a particle executing simple harmonic oscillation and hence show that $y = a \sin(\omega t + \phi)$.	20	2
	c)	Show that the time period of a simple pendulum will be infinite kept in a falling left.	05	3
3.	a)	Define potential energy and kinetic energy.	06	1
	b)	Prove that total energy of a simple harmonic oscillator does not depend upon time and it is constant.	18	2
	c)	A body is vibrating with simple harmonic motion of amplitude 15 cm and frequency 4 Hz. Calculate: i) the maximum values of the acceleration and velocity and ii) the acceleration and velocity when the displacement is 9 cm.	06	3
4.	a)	Write down the postulates of the kinetic theory of gases.	05	1
	b)	Show that pressure of a gas is two-third of the kinetic energy per unit volume of the gas.	20	2
	c)	Calculate the root mean square velocity of a molecule of mercury vapour at 300 K.	05	3

PART-B (Marks: 90)

(Answer any three questions from 5 to 8 including Q. No. 5)

			Marks	COs			
5.	a)	Write down the conditions in which real gas behaves like an ideal gas.	05	1			
. , }	b)	Show that the average kinetic energy per molecule of a perfect gas per degree of freedom is $\frac{1}{2}kT$.					
7	c)	Calculate the molecular diameter of Nitrogen molecules, if $n = 2.7 \times 10^{25}$ molecules per m ³ and mean free path for nitrogen is 8×10^{-8} m.	10	3			
6.	a)	What is meant by thermodynamic equilibrium?	05	1			
1	b)	Obtain an expression for the efficiency of a reversible Carnot engine with a perfect gas as the working substance.	15	2			
į. Į	c)	The Van der Waals constants a and b for 1 gram molecule of Hydrogen are $a=0.245$ atms-litre ² -mole ⁻² and $b=2.67\times 10^{-2}$ litre-mole ⁻¹ . Calculate the critical temperature.	10	3			
		Fig. 1					
7.	a) .	Define stream line motion and turbulent motion of a fluid.	05	1			
ž.	b)	Derive an expression for surface tension of liquid by capillary rising method.	15	2			
1	c)	Calculate the terminal velocity of an air bubble of radius $2 \times 10^{-5} \text{m}$ rising in a water of viscosity 10^{-3}Ns/m . Density of water is 10^3kg/m^3 . [Neglect density of air in comparison to that of water].	10	3			
8.	a)	Explain the terms: stress and strain.	05	1			
	b)	Show that the maximum possible value of Poisson's ratio is 1/2.	15	2			
	c)	Find the force required to increase the length of a steel wire of 10^{-6} m ² area of cross-section by 50% whose Young's modulus is 2×10^{11} Nm ⁻² .	10	3			

Bangladesh Army University of Science and Technology

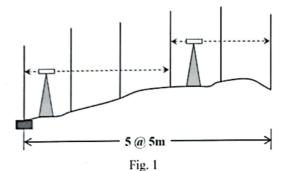
Department of Civil Engineering Final Examination, Winter 2022

Course Code: CE 1103 Time: 03 (Three) hours Level-1 Term-I Full Marks: 180

Course Title: Surveying

- N.B. The questions are of equal value.
 - · Figures in the margin indicate full marks allotted to each question.
 - Symbols and abbreviations bear their standard meaning.
 - Use separate answer script for each PART.
 - The corresponding course outcomes (CLOs) are given in the right most column.

PART- A (Marks: 90)

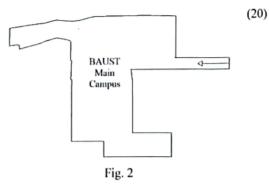

(Answer any three questions including Q. No. 1)

Marks CLOs

- 1. a) Illustrate the types of levelling operations with neat sketches.
 - b) The profile of a longitudinal levelling is shown in Fig. 1 below.

(18)3

(12)


The consecutive readings taken from a dumpy level at every 5 m interval are:

2.850, 1.950, 1.125, 0.700, 2.525, 2.260, 2.525 m

The first reading was taken at a chainage of 70 m where the value of RL (Reduced Level) is 101.100 m. The instrument was shifted after fourth reading.

Apply any of the following two methods to determine the values of RL (Reduced Level) at respective points:

- Line of collimation method
- ii. Rise-and-fall method
- 2. a) Illustrate, with neat sketch, the process (any five) of taking perpendicular offset on (10)field.
 - b) Fig. 2 shows the plot of the main campus of BAUST. It was prepared few years back on the basis of data collected from a chain survey. The scale used for this map was 40 m to 1 cm. But most recently, it is found that the map has been shrunk and a line originally 20 cm long is only 19.5 cm long at present. Again the 20 m chain was 3 cm too long. If the present area of the map measured by a planimeter is 27.20 cm², determine the true area of the land surveyed.

- 3. a) Describe the process of orientation in plane table survey with sketches.
 - b) Describe any five characteristics of contour line with proper figures.
 - c) Briefly explain the process of reciprocal ranging with neat sketch.

- (10)
- (10)

1

2

(10)

١.	a)	Explain any two	of the followi	ng terms w	ith neat ske	tches:				(10)	1
		i. Index ske ii. Double lii iii. Bench ma	ne field book	,							
	b)	The following for	rward and bac	kward bea	rings were o	bserved in	a close	ed trave	rse:	(20)	2
		Line	Length (m) Fo	ore Bearing		Back B	earing			
		AB	30		43°22′		2230				
		BC	35		34°32′		2140				
		CD	33		101°20′		2810				
		DA	34		218046		3804				
		Draw the closed traverse ABCDA on the basis of the date given below and calculate the interior angles ($\angle A$, $\angle B$, $\angle C$, $\angle D$).									
				PAR	T- B (Mark	s: 90)					
			(Answe		questions i		No. 5)			
			(ruisire	a uny unec	questions i	nerdanig Q	. 140. 5	,		Marks	CLOs
5.	a)	Define centrifugation of the control of the centrifugation of the		What are a	allowable va	lues of ce	ntrifuga	ıl ratio	(CR) for	(5)	1
	b)	In saidpur bypas angle of intersec radius 240 m by Prepare a setting the data for field	tion is 150°. the deflection out table wh	Calculate angle met	all data nec hod. The pe	essary for g intervals	setting may be	out a taken	curve of as 20 m.	(25)	2
ó.	a)	Explain celestial	latitude and le	ongitude sy	vstem					(10)	1
-	b)	Describe earth's				necessary	illustr	ation as	nd relate	(20)	2
	0)	them with season		n round t	ic sun with	necessary	mustr	ation a	ia relate	(20)	-
7.	a)	Illustrate Geogra	phic Informat	ion System	(GIS) with	applicatio	ns.			(10)	1
	b)									(20)	2
		Distance (m)	0 4		12 16	24	32	44	56	(/	
		Offset (m)	2.70 4.80		.55 5.67	5.40	5.80	4.50	3.40		
		Find the area between the survey line, the curved boundary line, and the first and the last offsets by:									
		-	zoidal rule s rule.								
3.	a)	Briefly describe	any two of the	e following	s with neat	sketches (i	f any):			(10)	1
		 i. Transition ii. Spherical iii. Prismoid iv. Remote s 	triangle al formula for	volume co	omputation						
	b)	A road embankment of BAUST central field road of formation width of 8 m and side slope 2:1 is to be constructed. The ground level along the centre line is as follows:								(20)	3
		Distance (m)	0	50	100	150	200)	250		
		Offset (m)	115.75	114.35	116.80	115.20	118.5	50 1	18.25		
		The embankmen	nt has a rising 00. Assuming	gradient the groun	of 1 in 100 d is level ac	, and the feross the co	ormatic entre lii	on level ne, com	at zero pute the		

volume of earth work.